vVARDIS Weissbad & vVARDIS Edelweiss
Ardu, S. et al (2018) “Protection Against Discolouration by Two Over-the Counter Desensitising Products” Oral Health Prev Dent 16(5) 439-444
Bamidis, E. & Kunzelmann K.-H. (2017) “Evaluation of a Novel Hypersensitivity Relieve Gel Being Applied Prior to Bleaching” BSODR, Plymouth, GB
Ceci M. et al, (2015) “Effect of Self-Assembling Peptide P11-4 on Enamel Erosion: AFM and SEM Studies” Scanning (9999): 1-8.
Doberdoli D. et al (2020) “Randomized Clinical Trial investigating Self-Assembling Peptide P11-4 for Treatment of Early Occlusal Caries” Sci Report https://doi.org/10.1038/s41598-020-60815-8
Hill R. et al (2020) “An In Vitro Comparison of A Novel Self-Assembling Peptide Matrix Gel and Selected Desensitizing Toothpastes in Reducing Fluid Flow by Dentine Tubular Occlusion” J Dent Maxillofacial Res 3 (1) 1-11
Jablonski-Momeni, A. et al. (2019) “Randomised in situ clinical trial investigating self-assembling peptide matrix P11-4 in the prevention of artificial caries lesions” Scientific Reports 9, Article number: 269
Müller, P. et al. (2013) “Evaluation of a tooth gel with Curolox® Technology as part of professional tooth-cleaning, with regards to patient satisfaction and the effects of hypersensitivity” Swiss Dental Hygienists Conference 2013, Lausanne.
Saxer, U.P. et al (2014) “Efficacy of CURODONT™ D'SENZ to reduce tooth sensitivity when applied before professional dental cleaning“ Internal Report.
Schlee M., et al. (2018). “Self-Assembling Peptide Matrix for treatment of dentin hypersensitivity: A randomized controlled clinical trial” J Periodontol doi: 10.1002/JPER.17-0429.
Schnatterer M. (2018). “Clinical Benefit of a Mouthrinse for the Treatment of Dentine Hypersensitivity.” Internal Report
Soares, R. et al (2017) “Assessment of Enamel Remineralisation After Treatment with Four Different Remineralising Agents: A Scanning Electron Microscopy (SEM) Study” J Clin Diagn Res Vol-11(4): ZC136-ZC141
Stoleriu, S. et al (2019) “ Study Regarding the Capacity of Self-assembling Peptides to Remineralize the Active and Chronic Incipient Caries Lesions” Rev Chim (Bucharest) 70(8) 3073-3076
vVARDIS Aletsch
Bommer, C. et al (2018) “ Hydroxyapatite and Self-Assembling Peptide Matrix for Non-Oxidizing Tooth Whitening” J Clin Dent 2018;29:57–63
Hojabri, N. (2019) “Evaluation of the Whitening Effect of a Mixture of Self-assembling Peptide and Hydroxyapatite on Bovine Enamel”, Thesis, LMU Munich
Hojabri, N. et al (2020) “Adhesion and whitening effects of P11-4 self-assembling peptide and HAP suspension on bovine enamel.” Clin Oral Investig https://10.1007/s00784-020-03654-1
Kunzelmann, K.-H., Lysek, D.A. (2015). “Working Mechanism of Tooth Whitening Based on Hydroxyapatite Suspended in a P11-4 Peptide Matrix.” IADR Abstract 838, Boston, USA.
Xu, X. (2015). “New Approaches to Tooth Whitening Based on Changing the Optical Properties with Calcium Phosphate Containing Suspensions”, Thesis, LMU Munich
Focus Group (2019). “Effectiveness and Reception of a novel non-peroxide whitening product as judged by consumers”, New York & Los Angeles, INTERNAL REPORT
CUROLOX™ & WX TECHNOLOGY
Aggeli, A., M. Bell, et al. (2003). "pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases." J Am Chem Soc 125(32): 9619-9628.
Araujo, I.J. et al. (2019) “P11-4 self-assembly peptide induces biomineralization without cytotoxicity in MDPC-23 cell line” Pulp Biology and Regeneration Group Satellite Meeting, Portland OR, USA 23- 25 June 2019
Barbosa-Martins, L.F. et al (2018) “Biomimetic Mineralizing Agents Recover the Micro Tensile Bond Strength of Demineralized Dentin.” Materials Sep 14;11(9): pii: E1733. doi: 10.3390/ma11091733.
Burke, J.L. (2011) “In situ engineering of skeletal tissues using self-assembled biomimetic scaffolds.” PhD Thesis, University of Leeds, Leeds Dental Institute.
Carrick, L. M. et al (2007) Effect of ionic strength on the self-assembly, morphology and gelation of pH responsive β-sheet tape-forming peptides.” Tetrahedron, 63(31): 7457-7467.
Davies, R.P.W. et al (2014). “Novel Self-Assembling Peptides, for the Treatment of Early Caries Lesions” Caries Res (48): (2014) 404.
Davies, R.P.W. et al (2015). “Treatment of Fabricated Caries Lesions; Self-Assembling Peptides vs. Fluoride” Caries Res (49): 359
De Sousa, J.P. et al (2019). “The Self-Assembling Peptide P11-4 Prevents Collagen Proteolysis in Dentin.” J Dent Res https://doi.org/10.1177%2F0022034518817351
Felton, S. (2005): “Self Assembling β-sheet Peptide Networks as Smart Scaffolds for Tissue Engineering”. PhD Thesis, University of Leeds, Leeds Dental Institute.
Firth, A., et al. (2006). “Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering.” Nanomed (1): (2006) 189.
Kang, J., et al. (2016). “Multi-level modelling to further understanding of micro-CT data”, Enamel9 Conference, Leeds, UK.
Kind, L. et al (2017). “Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide” J Dent Res https://doi.org/10.1177/0022034517698419
Kirkham, J., A. Firth, et al. (2007). "Self-assembling peptide scaffolds promote enamel remineralisation." J Dent Res 86(5): 426-430.
Kyle, S., A. Aggeli, et al. (2010). "Recombinant self-assembling peptides as biomaterials for tissue engineering." Biomaterials 31(36): 9395-9405.
Kyle, S., A. Aggeli, et al. (2008). "The self-assembling peptide, P11-4 for a scaffold in regenerative medicine." Eur Cell and Materials 16(Suppl 3): 70.
Maude, S., E. Ingham, et al. (2013). "Biomimetic self-assembling peptides as scaffolds for soft tissue engineering." Nanomedicine (Lond) 8(5): 823-847.
Saha, S., et al. (2019). “A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study" Bone 24 (127):602-611. doi: https://doi.org/10.1016/j.bone.2019.06.020
De Sousa, J.P., Puppin-Rontani, R.M. et al. (2018) “The Self-Assembling Peptide P11-4 Prevents Collagen Proteolysis in Dentin” J Dent Res https://doi.org/10.1177%2F0022034518817351
Wilshaw, S. P., A. Aggeli, et al. (2008). "In vivo assessment of the immunogenicity of self-assembling peptides for use in regenerative applications." Eur Cell and Materials 16(Suppl 3): 97.
Dental Reviews
Acharya, G. et al (2016). “Recent Biomimetic Advances in Rebuilding Lost Enamel Structure.” J Int Oral Health 8(4):527-535
Alkilzy, M. et al (2018). “Treatment of Carious Lesions Using Self-Assembling Peptides.” Adv Dent Res 29(1): 42-47.
Alkilzy, M. & Splieth, C.H. (2020). “Self-assembling peptides for caries prevention and treatment of initial carious lesions, a review.” Dtsch Zahnärztl Z Int 2(1): 21-25
Amaechi, B. T. (2015). “Remineralization therapies for initial caries lesions.” Current oral Health Reports 2(2): 95-101
Amaechi, B. T. (2017). “Remineralization – the buzzword for early MI caries management.” Br Dent J 223(3): 173-182.
Bonchev, A. et al (2020). “Self-assembling Peptide P 11-4: A Biomimetic Agent for Enamel Remineralization” Int J Pept Res Ther https://doi.org/10.1007/s10989-020-10136-1
Buzalaf, M. A. & Pessan, J. P. (2017). “New Preventive Approaches Part I: Functional Peptides and Other Therapies to Prevent Tooth Demineralization» Monogr Oral Sci 26: 88-96
Clarkson, B. H. & Exterkate, R. A. M. (2015). “Noninvasive dentistry: a dream or reality?” Caries Res 49 Suppl1: 11-17
Donovan, T. E. et al. (2014). “Annual review of selected scientific literature: report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry.” J Prosthet Dent 112(5): 1038-87
Gonzalez-Cabezas, C. & Fernadez, C.E., (2018) “Recent Advances in Remineralization Therapies for Caries Lesions” Adv Dent Res 29(1) 55-59
Pandya, M. & Diekwisch, T. (2019) «Enamel biomimetics-fiction or future of dentistry” Int J Oral Sci 11(1) 8
Philip, N. (2018). “State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management.” Caries Res 53: 284-295
Pitts, N. (2013). “Summary of: Treatment of early caries lesions using biomimetic self-assembling peptides - a clinical safety trial.“ Br Dent J 2015(4): 174-175